Question 1

Question 2

2(b)(i)	reversible reaction	1	1
---------	---------------------	---	---

Question 3

3(d)(i)	reversible reaction		1	
---------	---------------------	--	---	--

Question 4

4(c)(i)	nothing can enter or leave	1
4(c)(ii)	M1 the rate of forward reaction equals (the rate of the) reverse reaction	2
	M2 concentrations of reactants and products are constant	

4(c)(iii)	M1 increases	4
	M2 decreases	
	M3 decreases	
	M4 no effect	

Question 5

5(a)	nitrogen: air (1)				2
	hydrogen: methane (1)				
5(b)(i)	enthalpy change				1
5(b)(ii)	(the value of) ΔH is negative				1
5(b)(iii)	M1 450 (1)				3
	M2 20 000 (1)				
	M3 iron (1)				
5(b)(iv)	one mark for each of			1	4
			decreases		
	de	ecreases	decreases		
			no change		
5(b)(v)	M1 kinetic energy of particles increases (1)				3
	M2 frequency of collisions between particles incl	reases (1)			
	M3 higher percentage / proportion / fraction of co	llisions / part	icles have energy	greater than / equal to activation energy (1)	
	or more of the collisions / particles have energy gre	eater than / e	qual to activation	energy	

Question 6

6(a)(i)	4FeS ₂ + 11O ₂ → 2Fe ₂ O ₃ + 8SO ₂	1
6(a)(ii)	iron(III) oxide	1
6(b)(i)	yield of SO₃ is less	1
6(b)(ii)	yield of SO₃ is less	1
	OR	
	rate is less	

Question 7

7(a)(i)	$S + O_2 \rightarrow SO_2$	1
7(a)(ii)	(temperature) 450 °C (1)	4
	(pressure) 1–2 atmosphere(s) (1)	
	vanadium(V) oxide catalyst (1)	
	$2SO_2 + O_2 \rightleftharpoons 2SO_3 (1)$	
7(a)(iii)	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$	1
7(a)(iv)	water	1

Question 8

8(a)	the rate of forward reaction equals the rate of the reverse reaction (1)	2
	concentrations of reactants and products are constant (1)	
8(b)	reaction too slow (1)	2
	yield of ethanoic acid too low (1)	
8(c)	increases (1)	3
	decreases (1) decreases (1)	
8(d)	cobalt (1)	2
	transition element (1)	

Question 9

9(a)	Haber (process)	1
9(b)	air	1
9(c)	reversible	1
9(d)	450 (1) 200 (1)	2
9(e)	Iron / Fe	1
9(f)	reduced temperature: M1 (position of) equilibrium moves to right-hand side (1)	4
	M2 reaction is exothermic (1)	
	reduced pressure: M3 (position of) equilibrium moves to left-hand side (1)	
	M4 more (gaseous) moles on left hand side (1)	

9(g)	M1 rate decreases and particles have less energy (1)	3
	M2 less collisions (between particles) occur per second / per unit time (1)	
	M3 less of the particles/collisions have energy equal to or above the activation energy (1)	
	or less of the particles / collisions have sufficient energy to react	
	or a lower percentage / proportion / fraction of collisions (of particles) are successful or have energy equal to or above activation energy	
9(h)	(NH ₄) ₂ SO ₄	1

Question 10

10(d)(i)	water(s) of crystallisation	1
10(d)(ii)	blue	1
10(d)(iii)	CuSO ₄ ·5H ₂ O	2
	M1 CuSO ₄ (1) M2 ·5H ₂ O (1)	